BASIC INFORMATION Name: TC003F Description: Lumped Capacity Heat Conduction Model Type: Function Estimation Unknowns: 100 Data Points: 100

FORWARD PROBLEM Problem Type: Linear Mathematical Model:

$$\beta_1 \frac{d\eta}{dt} + \beta_0 \eta = q(t), \quad t > 0; \tag{3.5a}$$

$$\eta = \eta_0, \quad t = 0. \tag{3.5b}$$

Numerical Solution: Explicit Euler integration; Initial Conditions:

$$\eta_0 = 1. \tag{3.6}$$

Independent Parameters: $t \in (0; t_f]$, $t_f = 600$ s; $n_t = 50$; $t_i = i\Delta t$; $\Delta t = 6$ s; $\beta_0 = 1$; $\beta_1 = 5$. **Parameters to be Estimated:** $q_i = q(t_i)$, $i = 1, ..., n_t$, so that $\mathbf{x} = \begin{bmatrix} q_1 & q_2 & \dots & q_N \end{bmatrix}^T$ **Exact Parameters:**

$$q(t) = q_0(2 + \cos \omega t) \tag{3.7}$$

Plot: Cf. Fig. 3.10

EXPERIMENTAL DATA Type: Synthetic; **Dataset size:** $n_t = 50$; **Noise:** Zero mean Gaussian with std $\sigma_y = 0.2 \degree C$; **Download of Synthetic Data:** "TC003F_data.dat" file with (t_i, y_i^{exact}, y_i) . **Plot:** Cf. Fig. 3.11

REGULARIZATION PARAMETER SELECTION Selection Method(s): L-curve and Morozov; Selected Parameter: $\lambda = 10^4$; Plot: Cf. Fig. 3.12 (L-curve) and Fig. 3.13 (Morozov).

24

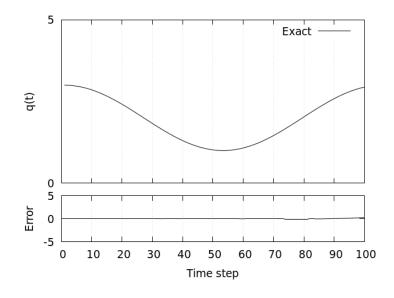


Figure 3.10: Exact heat flux q(t) given in Eq. (3.7).

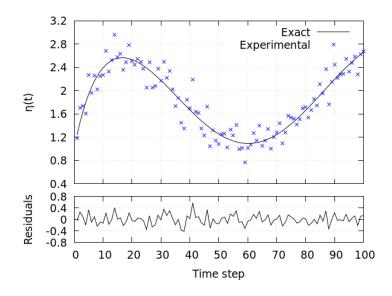


Figure 3.11: Exact and synthetic measurements.

INVERSE PROBLEM

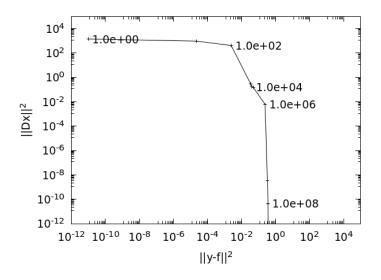


Figure 3.12: L-curve for problem TC003F.

Solution Method: Iterative Newton-Gauss solution; Regularization: 0-th order Tikhonov with $\lambda = 10^4$; Plots: Exact vs. Estimated values (cf. Fig. 3.14) and Mapping reconstruction (cf. Fig 3.15).

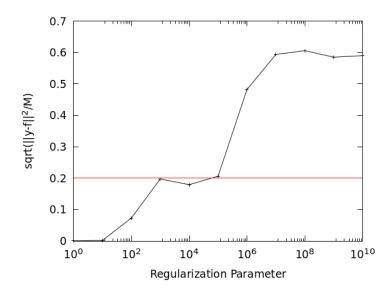


Figure 3.13: Morozov criteria for problem TC003F.

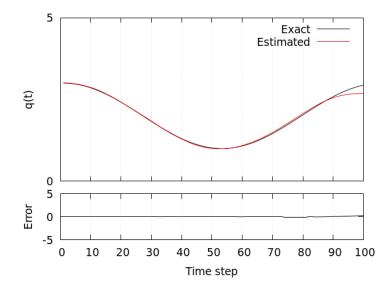


Figure 3.14: Exact and estimated profiles for q(t), along with estimation error.

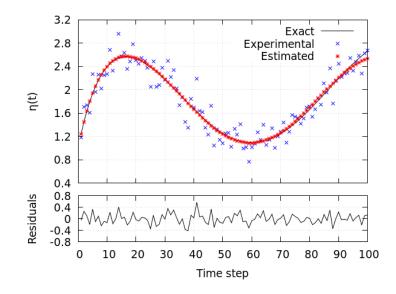


Figure 3.15: Synthetic Measurements, Mapped Solution and Residuals.