BASIC INFORMATION Name: TC002F Description: 1D Transient Inverse Heat Conduction Type: Function Estimation Unknowns: 50 Data Points: 5000

FORWARD PROBLEM Problem Type: Linear Mathematical Model:

$$\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left[k(x) \frac{\partial T}{\partial x} \right], \quad x \in [0, L], \quad t \in [0, t_f]$$
(3.2)

$$T = T_A, \quad x = 0, \quad t \in [0, t_f];$$
(3.3a)
$$T = T_B, \quad x = I, \quad t \in [0, t_f];$$
(3.3b)

$$T = T_B, \quad x = L, \quad t \in [0, t_f];$$
 (3.3b)

$$T = T_0, \quad x \in [0, L], \quad t = 0.$$
 (3.3c)

Numerical Solution: Implicit Finite Volume Method; **Independent Parameters:** L = 0.15 m; $t_f = 600$ s; $\Delta x = 3 \times 10^{-3}$ m; $\Delta t = 6$ s; $\rho = 7830$ kg/m³; $c_p = 434$ J/kg°C; $T_A = 150$ °C; $T_B = 100$ °C; $T_0 = 200$ °C. **Exact Parameters:**

$$k(x) = \begin{cases} 100 \text{ W/m}^{\circ}\text{C} \quad L/3 < x < 2L/3 \\ 50 \text{ W/m}^{\circ}\text{C} \quad \text{elsewhere} \end{cases}$$
(3.4)

Plot: Cf. Fig. 3.6

EXPERIMENTAL DATA

Type: Synthetic; **Dataset size:** N = 5000; **Noise:** Zero mean Gaussian with std $\sigma_y = 1$ °C; **Download of Synthetic Data:** "TC002F_data.dat" file with (t_i, y_i^{exact}, y_i) .

REGULARIZATION PARAMETER SELECTION Selection Method(s): GCV; Selected Parameter: $\lambda = 3.736 \times 10^{-1}$; Plot: Cf. Fig. 3.7.

16

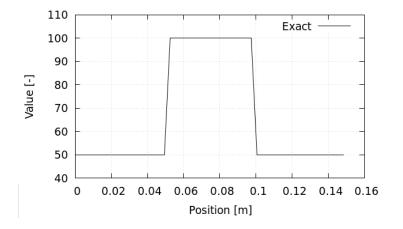


Figure 3.6: Exact thermal conductivity k(x) given in Eq. (3.4).

INVERSE PROBLEM Solution Method: Iterative Newton-Gauss solution; **Regularization:** 0-th order Tikhonov with $\lambda = 10^{-2}$; **Plots:** Exact vs. Estimated values (cf. Fig. 3.8) and Mapping reconstruction (cf. Fig 3.9).

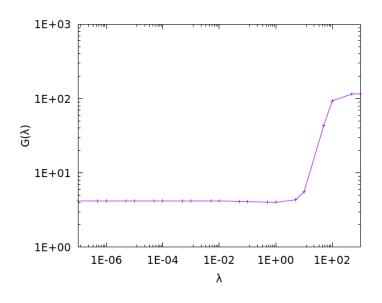


Figure 3.7: GCV curve for problem TC002F.

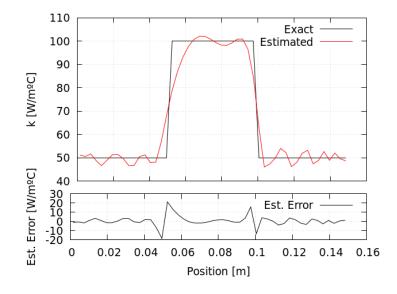


Figure 3.8: Exact and estimated profiles for k(x), along with estimation error.

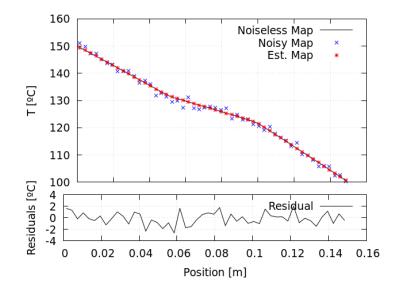


Figure 3.9: Synthetic Measurements, Mapped Solution and Residuals.